27 / 2024-08-05 12:05:42
Unsupervised Hyperspectral Image Fusion Based on Global Shared Convolutional Neural Network for Enhanced Spatial-Temporal-Spectral Resolution
Remote Sensing,Hyperspectral image,Spatial-temporal-spectral fusion,Convolutional Neural Networks (CNN).,Unsupervised learning
摘要待审
于浩洋 / 大连海事大学
王学腾 / 大连海事大学
郑珂 / 聊城大学
高连如 / 中国科学院空天信息创新研究院
胡姣婵 / 大连海事大学
Hyperspectral images (HSI) are renowned for their high spectral resolution and extensive wavelength coverage, but they often suffer from limited spatial and temporal resolution due to imaging sensor constraints. This may make it difficult for hyperspectral images to play a role in the acquisition of fine surface information and the observation of continuity of time scales. Spatial-temporal-spectral fusion (STSF) aims to synthesize the temporal, spatial, and spectral information from multisource remote sensing images to reconstruct hyperspectral images with high spatial and temporal resolution. However most existing STSF methods are still limited to the assumption of linear spatial temporal and spectral relationships. Furthermore, the STSF methods based on Landsat and MODIS cannot directly process the current hyperspectral data which has a lower temporal resolution. This paper proposed an unsupervised spatial-temporal-spectral fusion model for hyperspectral images using a global shared convolutional neural network (UGSCNN). The proposed method has two models: 1) Spatial-spectral down model: combine spectral unmixing theory with deep learning to down sample the space and the spectrum; 2) Spectral up model: utilize the shared global information to up sample the spectrum. To verify the proposed method, we compared it with others using simulated and real on-board data, proving its effectiveness and practical fusion results.
重要日期
  • 会议日期

    09月20日

    2024

    09月22日

    2024

  • 08月30日 2024

    初稿截稿日期

  • 09月22日 2024

    注册截止日期

主办单位
山东省人民政府
中国电子学会
承办单位
中国科学院学部
中国科学院空天信创新研究所息
复旦大学
联系方式
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询
Baidu
map