Lightweight Multi-Axis Vibration–Current Fusion CNC Process-Segment Recognition Driven by Cross-Modal Knowledge Distillation
编号:67 访问权限:仅限参会人 更新:2025-06-20 16:37:47 浏览:19次 张贴报告

报告开始:暂无开始时间(Asia/Shanghai)

报告时间:暂无持续时间

所在会场:[暂无会议] [暂无会议段]

暂无文件

摘要
    To overcome the difficulty of extracting steady-state intervals in complex cutting and the scarcity of plant sensors, we propose a train-time multimodal / run-time unimodal framework for CNC process-segment recognition. Multi-axis vibration and spindle-current signals are synchronously collected on workpieces of different materials to build a benchmark dataset. In the teacher network, a self-distillation spatial attention mechanism compresses intra-modal redundancy, while a vibration-guided cross attention module transfers high-frequency cues from vibration to the current stream, yielding a refined fused representation. Multi-stage knowledge distillation then equips a student network that requires only current RMS sequences at inference. Using current signals alone, the student attains 97 % accuracy while sharply reducing parameters and latency. Results confirm that high-precision, lightweight process-segment recognition is achievable with a single current sensor, paving the way for practical shop-floor monitoring.
关键词
CNC process-segment recognition; cross-modal knowledge distillation; attention mechanism; lightweight monitoring
报告人
Haijun Shen
student Kunming University of Science and Technology

稿件作者
Chang Liu Kunming University of Science and Technology
Haijun Shen Kunming University of Science and Technology
Feifei He Kunming University of Science and Technology
Lei Yang Kunming University of Science and Technology
Jiaxin Zhao Kunming University of Science and Technology
发表评论
验证码 看不清楚,更换一张
全部评论
重要日期
  • 会议日期

    08月01日

    2025

    08月04日

    2025

  • 06月20日 2025

    初稿截稿日期

主办单位
中国机械工程学会设备智能运维分会
承办单位
新疆大学
移动端
在手机上打开
小程序
打开微信小程序
客服
扫码或点此咨询
Baidu
map